Will the Cascades soon be easier to climb? Jeng-Hann Chong^{1*} Eric Lindsey¹ ¹Earth and Planetary Sciences, UNM *chongjh11@unm.edu

Summary

- Widespread subsidence is recorded 300-500 km from the coast throughout Cascadia (the Pacific Northwest).
- In this study, we examine several potential numerical models to explain this vertical signal in Cascadia.
- Our preliminary results show subducting slab geometry can potentially explain the surface deformation.

How?

Global Navigation Satellite Systems (GNSS) is an umbrella term for all the different navigational systems (e.g., GPS). We can use GNSS to measure how much is the ground moving.

GNSS

Numerical modeling is a broad term for using complex simulations. We apply numerical models to simulate mantle processes and explore potential sources of vertical deformation on the surface.

Model a : linear slab subduction

► tested 15°, 25°, 45° degrees linear slab

Background

• The Cascadia subduction zone is where the Pacific Plate subducts beneath the North American Plate. It is capable of hosting large earthquakes in the contiguous United States (*i.e.*, *M*8+ *in* 1700).

• Vertical displacement from GNSS across the Cascadia subduction zone shows large scale

Model (b): flat slab subduction

► tested 3 different flat slab length

 $\overline{}$ 10

subsidence extending inland east of the Cascades.

• The 3 main ideas for the widespread subsidence : A)Glacial Isostatic Adjustment (GIA) - has the wrong spatial pattern (Lau et al., 2020) B)Subduction-driven mantle flow - this study C)Post-earthquake influence

Why do we care?

• The ground stores elastic energy that is eventually released as earthquakes. • We can measure these ground movements to **inform us about earthquake hazards** and *improve community resilience* to earthquakes. • Dense GNSS coverage offers a unique opportunity for us to study fault interactions

in the region.

This research is funded by NASA FINESST 2022 awarded to JHC and EOL award number 80NSSC22K1534.

Findings

The geometry of a subducting plate can potentially affect the surface deformation

• We need more simulations of other parameters that can contribute to the signals we see on the surface.